Long Term Courses *    67 Selections in IIT JEE 2012 *    192 Selections in AIEEE 2012 *    19 Selections in AIPMT 2012 *    330 Students score 90% + in CBSE-XII Board 2013 *    445 Students score 10 CGPA in CBSE-X Board 2013
Attend Free Demo Class Now
Name
 
Contact Number
 
 
Email ID
 
 
Class
 
City
 
   
 
Contact our Toll Free Nos
  • India Toll Free : 1-800-3070-0017
  • Bahrain (National) : 973-16198627
  • Indonesia Toll Free : 1-803-015-204-5864
  • Singapore (National) : 65-31586005
  • USA/Canada Toll Free : 1-888-442-3128
  • Others : +91-9899713975
 
operations_kei 09718199348 Login Reg
IITians @ your home
ISO 9001:2008 Certified

MOTION IN ONE DIMENSION

One-dimensional motion with constant acceleration


If the acceleration of a particle varies in time, its motion can be complex and difficult to analyze. However, a very common and simple type of one-dimensional motion is that in which the acceleration is constant i.e one-dimensional motion with constant acceleration. When this is the case, the average acceleration over any time interval equals the instantaneous acceleration at any instant within the interval, and the velocity changes at the same rate throughout the motion.
If we replace ¯ax by ax in Equation 2.5 and take ti = 0 and tf to be any later time t, we find that
one-dimensional motion with constant acceleration This powerful expression enables us to determine an object’s velocity at any time t if we know the object’s initial velocity and its (constant) acceleration. A velocity–time graph for this constant-acceleration motion is shown in Figure 2.10a. The graph is a straight line, the (constant) slope of which is the acceleration ax ; this is consistent with the fact that ax = dvx/dt is a constant. Note that the slope is positive; this indicates a positive acceleration. If the acceleration were negative, then the slope of the line in Figure 2.10a would be negative.
When the acceleration is constant, the graph of acceleration versus time (Fig. 2.10b) is a straight line having a slope of zero.
position–time graph Figure 2.10 An object moving along the x axis with constant acceleration ax . (a) The velocity–time graph. (b) The acceleration–time graph. (c) The position–time graph.

Because velocity at constant acceleration varies linearly in time according to Equation 2.8, we can express the average velocity in any time interval as the arithmetic mean of the initial velocity vxi and the final velocity vxf:
average velocity for constant acceleration Note that this expression for average velocity applies only in situations in which the acceleration is constant. We can now use Equations 2.1, 2.2, and 2.9 to obtain the displacement of any object as a function of time. Recalling that Δx in Equation 2.2 represents xf - xi , and now using t in place of Δt (because we take ti = 0), we can say
average velocity at constant acceleration We can obtain another useful expression for displacement at constant acceleration by substituting Equation 2.8 into Equation 2.10:
displacement at constant acceleration The position–time graph for motion at constant (positive) acceleration shown in Figure 2.10c is obtained from Equation 2.11. Note that the curve is a parabola. The slope of the tangent line to this curve at t = ti = 0 equals the initial velocity vxi , and the slope of the tangent line at any later time t equals the velocity at that time, vxf.
position–time graph for one-dimensional motion Figure 2.11 Parts (a), (b), and (c) are vx -t graphs of objects in one-dimensional motion. The possible accelerations of each object as a function of time are shown in scrambled order in (d), (e), and (f).

We can check the validity of Equation 2.11 by moving the xi term to the right hand side of the equation and differentiating the equation with respect to time:
one-dimensional motion with constant acceleration Finally, we can obtain an expression for the final velocity that does not contain a time interval by substituting the value of t from Equation 2.8 into Equation 2.10:
one-dimensional motion at constant acceleration For motion at zero acceleration, we see from Equations 2.8 and 2.11 that
one-dimensional motion at zero acceleration That is, when acceleration is zero, velocity is constant and displacement changes linearly with time.

Equations 2.8 through 2.12 are kinematic expressions that may be used to solve any problem involving one-dimensional motion at constant acceleration. Keep in mind that these relationships were derived from the definitions of velocity and acceleration, together with some simple algebraic manipulations and the requirement that the acceleration be constant.
kinetic equation for motion in a straight line The four kinematic equations used most often are listed in Table 2.2 for convenience. The choice of which equation you use in a given situation depends on what you know beforehand. Sometimes it is necessary to use two of these equations to solve for two unknowns. For example, suppose initial velocity vxi and acceleration ax are given. You can then find (1) the velocity after an interval t has elapsed, using vxf = vxi + axt, and (2) the displacement after an interval t has elapsed, using xf - xi = vxit + ½ axt2. You should recognize that the quantities that vary during the motion are velocity, displacement, and time.
You will get a great deal of practice in the use of these equations by solving a number of exercises and problems. Many times you will discover that more than one method can be used to obtain a solution. Remember that these equations of kinematics cannot be used in a situation in which the acceleration varies with time. They can be used only when the acceleration is constant.

one-dimensional motion with constant acceleration
examples of one-dimensional motion with constant acceleration
one-dimensional motion with zero acceleration
one-dimensional motion examples
one-dimensional motion with constant acceleration
one-dimensional motion constant acceleration

Do you like this Topic?

Share it on


       
       
Online Classroom Program Online Classroom Program 1 on 1 Online Classes 1 on 1 Online Classes Correspondence Course Correspondence Course Correspondence Course Best Pool of Faculty Result Oriented Coaching Program

Welcome to Kshitij Education India

Our Guarantee:

We're so sure you'll have the time of your life with us, we back our courses with a 100% Satisfaction Guarantee.

If for any reason you aren't 100% satisfied with your classes in first 7 days, just let us know and we'll refund your fees. No questions asked.

And based on your feedback, we will take the necessary steps to ensure we never repeat any mistakes as such.

Satisfaction Guaranteed
Live Chat